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Algorithms for Brownian dynamics computer simulations: Multivariable case
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Several Brownian numerical schemes for treating stochastic differential equations at the position Langevin
level are analyzed from the point of view of their algorithmic efficiency for large-N systems. The algorithms
are tested using model colloidal fluids of particles interacting via the Yukawa potential. Limitations in the
conventional Brownian dynamics algorithm are shown and it is demonstrated that much better accuracy for
dynamical and static quantities can be achieved with an algorithm based on the stochastic expansion and
second-order stochastic Runge-Kutta algorithms. The importance of the various terms in the stochastic expan-
sion is analyzed, and the relative merits of second-order algorithms are discussed.@S1063-651X~99!03108-6#

PACS number~s!: 02.70.2c
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I. INTRODUCTION

Dispersed systems such as polymer solutions and co
dal liquids can be represented by a set of stochastic equa
in which the effects of the large number of solvent molecu
on polymer or colloidal particles are represented by rand
forces and frictional terms. The complexity of such syste
prohibits exact analytic treatments in all but the most ide
ized of cases~e.g., infinitely dilute systems!. As a result,
various problems in dispersed phase systems require c
puter simulations to solve them. Compared to the w
established techniques for solving deterministic equation
motion, the methods for solving stochastic equations, wh
are often called stochastic dynamics~SD!, are considerably
less well developed.

The most simple form of SD called the Brownian dyna
ics ~BD!, which has been the mainstay of colloid modeli
over the past two to three decades, is the low-order algori
invented by Ermak and McCammon@1,2#. This technique is
at the level of the first-order Euler method for ordinary d
ferential equations and requires a very small time step
produce sufficiently accurate results. The method bene
from its simplicity and is straightforward to use but, becau
of the small time step required, is quite inefficient. BD sim
lations that are up to two orders of magnitude longer th
those for the equivalent MD systems are required. The
method can be made more efficient by adopting an appro
ate second- or higher-order algorithm. Unfortunately, onl
few proposals have been made, with little concern ab
their ability to handle efficiently large physically releva
many-body systems, and as shown below none of them
be considered as completely satisfactory.

Many of the improved BD schemes are Runge-Kutta-l
algorithms with some stochastic terms. Several algorith
along these lines have been proposed, e.g., by Helfand@3#,
Iniesta and Torre@4#, and recently one for the one-variab
case by Honeycutt@5#. All these methods, as for the dete
ministic Runge-Kutta methods, require more than one ev
ation of the particle force per time step, which clearly r
duces their efficiency.
PRE 601063-651X/99/60~2!/2381~7!/$15.00
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An algorithm that needs only one evaluation of the for
per time step was proposed by van Gunsteren and Beren
@6#. In the limit of the large friction~i.e., the limit for BD
applications!, the algorithm has a particularly simple form
which has been used to model, for example, polymer dyn
ics in solution@7#.

In the present work we shall consider, from the point
view of the BD algorithms, a basic finite step-size expans
for the stochastic differential equations, and make a comp
son between the efficiency of the different BD algorithms
large or multivariable systems. In a previous publication
carried out a preliminary study for one-dimensional syste
@8#.

The basic BD algorithms are considered in Sec. II, and
Sec. III a numerical test is discussed. Conclusions are in S
IV.

II. THE ALGORITHMS

The dynamics ofN interacting colloidal particles for
many purposes is adequately described by the posi
Langevin equation,

dria

dt
5

D

kBT
Fia1D1/2j ia , ~1!

wherei 51, . . . ,N labels the particles anda,b,g refer to the
Cartesian coordinates. The quantityj(t) represents a Gauss
ian white noise process,D is the free-particle self-diffusion
constant,kB is Boltzmann’s constant, andT is the tempera-
ture.Fia is the net force acting in directiona on the particle,
i, derived from the interparticle potentialU(rN) usually rep-
resented as a sum of pairwise additive direct interacti
V(r ) between the particles,

Fi52¹iU52¹i(
j 5” i

N

V~ ur i2r j u!. ~2!

The set of equations~1! constitutes a stochastic descriptio
of the N-particle evolution through time and space, which
2381 © 1999 The American Physical Society
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equivalent to the Smoluchowski equation without hydrod
namic interactions. The stationary solution of the Smo
chowski equation is the canonical ensemble distribution,

P~rN,`!5
1

Z
e2U/kBT, ~3!

whereZ is the partition function and thus the time averag
produced by Eq.~1! are the canonical ensemble averag
From the Smoluchowski or the Langevin equations,
short-time behavior of time correlation functions can be
timated @9#. Explicit results for the form of the Cartesia
components of the mean square displacement are availab
fourth order in time,

^Dr ia
2 &52Dt2

D2

T K ]2U

]r ia
2 L t2

1
D3

3T2 (
j 51

N

(
b51

d K S ]2U

]r ia]r j b
D 2L t32Bt41O~ t5!,

~4!

where d denotes the dimensionality of the system,T here
~and subsequently! denoteskBT, andB contains higher de-
rivatives of the total potential energy~the explicit form of
this term is irrelevant here!.

The conventional Brownian dynamics~CBD! algorithm
solves Eq.~1! for the many-body system according to th
following particle update scheme:

r ia~Dt !5r ia1
D

T
FiaDt1Wia , ~5!

whereDt is the time step,r ia[r ia(0), andWi is a normally
distributed random force with zero mean and^WiaWj b&
52DDtd i j dab . van Gunsteren and Berendsen~GB! pro-
posed the following algorithm:

r ia~Dt !5r ia1
D

2T
~2Fia1DtḞ ia!Dt1Wia , ~6!

where the time derivative of the force is conventionally a
proximated byḞ5@F(t)2F(t2Dt)#/Dt.

The second-order stochastic Runge-Kutta~SRK! algo-
rithm updates particle positions

r ia~Dt !5r ia1
D

2T
~Fia

a 1Fia
b !Dt1Wia , ~7!

calculating the forces in two stagesFi
a5Fi(r

N), and then
Fi

b5Fi(R
N), at Ri5r i1(D/T)FiDt1W i . For a general sto-

chastic differential equation such as Eq.~1!, the following
expansion for the Cartesian components of the particle p
tion holds@10#:
-
-

s
.

e
-

to

-

i-

r ka~Dt !5r ka1Wka1
D

T
FkaDt1

D

T (
j 51

N

(
b51

d
]Fka

]r j b
K j b

1
D2

2T2 Dt2(
j 51

N

(
b51

d
]Fka

]r j b
F j b

1
D

2T (
p, j 51

N

(
b,g51

d
]2Fka

]r pg]r j b
Gp j

bg , ~8!

whereK andG are random numbers involvingW,

Kia5E
0

Dt

Wia~s!ds, Gi j
ab5E

0

Dt

Wia~s!Wj b~s!ds.

~9!

The expansion of Eq.~8!, which we call the SE expansion
results from the integration of Eq.~1!, the Taylor expansion
for F, and its repeated insertion into itself@10#. It is impor-
tant to recognize that the random numberKia is also, like
Wia , a Gaussian random number with the following prop
ties:

^Kia&50, ^KiaK j b&5
2

3
DDt3d i j dab ,

~10!
^WiaK j b&5DDt2d i j dab .

Thus, the term in Eq.~8! involving K is of orderDt3/2. The
last term is of orderDt2 but its nonlinearity does not allow
us to obtain a more explicit representation and the exact
mula is replaced by simpler~local! expressions with the

same first moment,Gi j
ab' 1

2 DtWiaWj b .
In the following, the algorithm based on the expansion

Eq. ~8! will be called the stochastic expansion~SE! algo-
rithm. In order to see the significance of the various terms
the SE expansion, we shall also consider another algorit
SEb, with the orderDt3/2 in which the two terms of the
second-order have been neglected, and the SEc algorithm, in
which only one term, the stochastic second-order term,
omitted ~the first three terms are just the CBD upda
scheme!. The SE@8# and SEb @11# algorithms have already
been considered for one-dimensional systems showing
eral advantages over other schemes and suggesting the
tential utility for multivariable systems.

The formal difference between the SRK and SE a
proaches can be deduced by expanding theFb force in the
SRK scheme@10#. The resulting formula is very similar to
that in Eq.~8! apart from theDt3/2 terms in whichKia are
approximated by1

2 DtWia . It can be shown that, as long a
the expansion parameter is small, the following SRK-li
scheme gives exactly the SE expansion~8!,

r ia~Dt !5r ia1
D

2T
~Fia

a 1Fia
b !Dt1Wia

1
D

2T (
j 51

N

(
b51

d ]Fia
a

]r j b
Sj b , ~11!

where
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^Sia&50, ^SiaSj b&5
2

3
DDt3d i j dab , ^WiaSj b&50.

~12!

It is to be noted thatSia , like Kia , is a Gaussian random
number but, unlikeKia , is not correlated withWia . The
algorithm based on Eq.~11! we shall call the SRKb algo-
rithm.

An important quantity enabling us to differentiate b
tween the various algorithms is the mean-square displ
ment in a single time step, MSD1. Its exact form follow
from Eq.~4!. The CBD algorithm gives only the trivial linea
approximation,

^Dr ia
2 &52DDt2

D2

T K ]2U

]r ia
2 L Dt21dCBDDt2, ~13!

and the error in the second-order term is

dCBD5
D2

T F 1

T K S ]U

]r ia
D 2L 1K ]2U

]r ia
2 L G . ~14!

For many physical realizations, the following relation hold

^Fia
2 &2TK ]2U

]r ia
2 L 50, ~15!

which implies dCBD.0. Thus, the CBD algorithmalways
overestimates the MSD1 by 2D2Dt2^Fia

2 &/T2.
The GB algorithm also yields an error in the second-or

term,

^Dr ia
2 &52DDt2

D2

T K ]2U

]r ia
2 L Dt21dGBDt2, ~16!

where

dGB5dCBD1
3D2

2T2 ^Fia
2 &S 12

^Fia~Dt !Fia~0!&

^Fia
2 &

D . ~17!

As the normalized autocorrelation function is less than un
the second contribution in thedGB is alwayspositive. This
means, rather surprisingly, that in general the GB algorit
yields larger errors than the CBD algorithm. The SRK alg
rithm gives

^Dr ia
2 &52DDt2

D2

T K ]2U

]r ia
2 L Dt22dSRKDt2, ~18!

with an error contribution,

dSRK5
D3

2T3
~^Fia

2 &2^FiaFia
b &!, ~19!

which is always positive and for smallDt can be approxi-
mated by the linear term. Thus, the SRK algorithm is the fi
algorithm to give the correct second-order term for MS
and yields an underestimation of MSD1 with a leading te
of orderDt3. The same is true also for the SRKb algorithm.
e-

:

r

,

-

t

Equation ~8! yields the following expression for the
MSD1:

^Dr ia
2 &52DDt2

D2

T K ]2U

]r ia
2 L Dt2

1
D2

T F 1

T K S ]U

]r ia
D 2L 2K ]2U

]r ia
2 L GDt21dSEDt3.

~20!

On the basis of the relation in Eq.~15!, the second term of
orderDt2 is equal to zero~for anyDt) and the expansion o
Eq. ~8!, like the SRK algorithm, gives the correct MSD
with some deviation only in terms of orderDt3.

It should be noticed that the same is true also for the Sb
and SEc algorithms.

III. NUMERICAL CALCULATIONS

In order to compare the efficiency of the above algorith
with increasingDt and to establish how the MSD1 erro
influence the static and dynamic quantities, we have con
ered the dynamics ofN5121 Brownian particles in two di-
mensions~2D! interacting via a Yukawa pairwise-additiv
potential,

V~r !5
V0

r
exp@2l~r 21!#, ~21!

whereV0 sets the energy scale andl is the screening param
eter characterizing the steepness and range of the pote
The Yukawa potential, being the electrostatic part of t
Derjaguin-Landau-Verwey-Overbeek~DLVO! potential
@12#, is considered to give a reasonable description of
interaction of a dilute charge-stabilized spherical colloid
suspensions@13#, and is often used as a model interaction
BD investigations@14,15#.

The basic simulation cell was a square with areaA, and
the usual periodic boundary conditions were applied. In
der to make the system test the various algorithms un
demanding conditions, the simulations were performed in
dense fluid region (T51,%5N/A50.5) and the interaction
potential was chosen to be strongly repulsive, withl58.

All quantities presented here are normalized into dim
sionless units, by choosings, s2/D, andV0 /s as the char-
acteristic values for length, time, and force. In the calcu
tions the averages were calculated from simulations
about 103 reduced time periods~i.e., ;107 time steps with a
time stepDt50.0001). In the SE algorithm based on Eq.~8!,
the two correlated random numbersWia and Kia were
sampled from a bivariate Gaussian distribution.

A validation problem with BD is that, unlike MD, there i
no conserved quantity that can be used to check the cor
ness of the time stepping algorithm. Furthermore, in the s
chastic part of the BD algorithms a random number gene
tor is used and operations on the random numbers have t
performed. In this situation some subtle error connec
with, for example, spurious random number correlations
easily be overlooked and any cross check of the code
highly desirable. In fact, Eq.~15! can serve this purpose. I
the case of the SRK algorithm, the equality Eq.~15! is well
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obeyed with accuracy better than 0.5% for allDt<0.0005.
An example of utility of Eq.~15! is shown in Fig. 1. In fact,
using this relation we were able to detect an error in the S
code connected with the use of the same random numbe
x andy coordinates, and which is hardly visible in the oth
more usually calculated quantities, e.g., energy in Fig. 1~b!.

Perhaps the most important yet simplest dynamical qu
tity is the one we shall consider, and that is the tim
dependent mean-square displacement~MSD!, over timet, for
an arbitrary particle,

D~ t !5
1

4t
^@r ~ t !2r ~0!#2&, ~22!

which is averaged over all particles.
In the long-time limit it gives the self-diffusion coefficien

of the particle. The general behavior of the MSD calcula
with the various algorithms is shown in Fig. 2 for a fair
large time stepDt50.0005~for other time steps the result

FIG. 1. Test of the cross-check formula Eq.~15!. The data are
obtained from the SRK scheme withDt5231025. The continuous
line represents the data obtained by the correct SRK code an
dashed line is the data produced by the SRK code in which in
rectly the same random number was used in the calculation of tx
andy components of the particle displacement. The formula of
~15! vs the accumulated simulation time~a! and the corresponding
total energy per particle~b!.
K
for
r

n-
-

d

are qualitatively very similar!. On the scale of the figure th
MSD curves obtained from the SRK, SRKb, and SE calcu-
lations coincide with the exact curve, produced by all alg
rithms in the limit of very small time step. The CBD curv
very slowly approaches from above towards the exact cu
Also the GB curve deviates considerably from the ex
curve at short times but converges relatively quickly
longer times~in about 10–15Dt) to the correct form. Notice
that in accordance with Eq.~17!, it starts above the CBD
curve. The SEb produces the correct short time limit in ac
cordance with Eq.~20! but fairly quickly starts to bend
downward with the maximum deviation somewhere arou
t50.05 and the deviations from the exact curve seem
persist for a long time. Also the SEc scheme gives noticeabl
deviations from the exact MSD curve. As one may see
Fig. 2, apart from the short-time region, it consequen
overestimates the exact results.

The statistical uncertainty of the MSD data, as for a
autocorrelation function~ACF!, increases with time from the
origin. In our case, in the long-time region (t.2) where a
plateau is reached, all calculated MSD curves~at least for
Dt<0.0005) lie within the error bars around the ‘‘exact
curve. Only the data produced by the CBD algorithm w
Dt50.0005 seem to show some systematic departure
deviations at long times. In this situation it is difficult t
make definitive statements about the influence of the part
lar algorithm on the long-time behavior of the MSD.

Therefore, within statistical uncertainty, all algorithms r
produce the long-time behavior of the MSD, but differ co
siderably in their ability to reproduce its intermediate a
particularly short-time characteristics. This is clearly seen
the enlargement in Fig. 2, which illustrates a significant
fluence of the MSD1 on the short-time behavior of the MS
In the enlargement, slight differences between the SR
SRKb, and SE algorithms are still hard to notice. The S
results practically coincide and those from the SRK meth

the
r-

.

FIG. 2. The mean square displacement over time of a
Yukawa fluid obtained from the seven BD algorithms discussed
the text with time stepDt50.0005. The curve labeled ‘‘exact’’ is
the limit obtained from calculations withDt5231025. The SE,
SRK, and SRKb algorithm data coincide with the exact curve. Th
inset presents an enlargement of the short-time regions.
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only very slightly underestimate the exact curve. The SRb
method produces data which lie between the SE and S
curves.

The significant influence of the size of the time step
the MSD1 and the short-time behavior of the MSD is illu
trated for the SRK and CBD algorithms in Fig. 3. The figu
also demonstrates that on increasing the magnitude ofDt,
deviations of the SRK data from the exact curve emer
although the SRK deviations are always more than ten tim
smaller than those from the CBD algorithm at the same s
of the time step.

The second important dynamical quantity of primary
terest often calculated in BD simulations is the shear-st
time autocorrelation function~SACF!, defined as

C~ t !5
V

%T
^sab~0!sab~ t !&, ~23!

wheresab is an off-diagonal component of the stress ten
(a5” b). The C(t) determines, through the Green-Kubo r
lation, the shear viscosity and its initial value gives t
infinite-frequency shear modulusG`5C(0). The shear
stress correlation function is a collective quantity, which d
cays relatively quickly towards zero. The normalized SAC
calculated with the various algorithms are compared in F
4. At short times theC(t) produced by the different algo
rithms converge to the exact curve, which is quite differe
behavior to what was observed for the MSD. With increas
time the curves become more different (t;0.03) and at even
longer times (t.0.1) they converge slowly again toward
the exact curve where they are mutually consistent wit
error bars. The most significant deviations are therefore
intermediate times, which may be seen more clearly in
inset in Fig. 4. Similarly, as in the case of the MSD, t
largest deviations are produced by the CBD, SEb, and SEc
algorithms, although now the CBD algorithm underestima
and SEb overestimates the exact curve. Also the GB sche
produces noticeable deviations from the exact curve. Ag
the best estimate is given by the SRK, SE, and SRKb algo-
rithms.

FIG. 3. The short-time region of themsd from the SRK and
CBD algorithm and four different sizes of the time step in incre
ing magnitude of deviation: 0.0001, 0.0005, 0.0008, and 0.001
K
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The influence of different sizes of the time step on t
SACF is illustrated in Fig. 5 for the case of the CBD an
SRK algorithms. In the case of the SRK scheme, apart fr
results obtained with the largest time stepsDt.0.0005, all
the data practically coincide with the exact curve~similar
behavior is observed for the SE and SRKb schemes!. In con-
trast, the influence of the magnitude ofDt on the CBD
scheme is quite significant and, as may be seen from
figure, only calculations withDt<0.0001 lead to the correc
form of the SACF~and consequently the viscosity of th
system!.

The behavior of the static quantities obtained by differe
algorithms at various time steps is illustrated in Figs. 6 and
In Fig. 6 the total energy per particle is shown. It appe
from the figure that the best approximation, at a given size
the time step, is achieved by the SE method and the wors~as

- FIG. 4. The SACF from different algorithms andDt50.0005.
The SE, SRK, and SRKb data coincide with the ‘‘exact’’ curve and
the inset shows an enlargement of the intermediate-time region

FIG. 5. The SACF from the SRK and CBD algorithm. Th
results are for different sizes of the time step in increasing ma
tude of deviation: 0.0001, 0.0005, 0.0008, 0.001. ForDt<0.0005
the SRK data coincide with the ‘‘exact’’ curve.
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expected! is by the CBD route. ForDt<0.0005, the results
produced by the SRK and SRKb algorithms are practically a
good as the SE~within the error bars they all coincide wit
the exact values!. For the larger time steps the deviatio
from the exact value become more significant. The res
produced by the SEb method are only slightly better and b
the SEc even slightly worse than that obtained by the CB
route. The SEc method becomes unstable atDt.0.0008. All
this clearly demonstrates the great importance of the part
lar terms in the SE expansion. The GB approach give
fairly good estimation of the energy, although the meth
becomes unstable forDt.0.0008. The results for the pres
sure are qualitatively very similar to that for the energy.
one can see in Fig. 7, the results for the shear modulus
quite similar to those of the energy. Again, the worst e
mates come from the CBD, SEc, and SEb, and the best from
SE, SRK, and SRKb schemes.

The clear disability of the SEc approach to estimate pr
erly the static quantities is rather unexpected. To confirm
important role of the second-order non-Gaussian stocha

FIG. 6. Energy of the Yukawa fluid vs time step from the d
ferent algorithms. The exact value is estimated to be 0.4345.

FIG. 7. The shear modulus vs time step from the different al
rithms. The exact value is estimated to be 1.70.
ts

u-
a

d

re
-

-
e
tic

term in the SE expansion, we have also performed BD c
culations with a 1D Brownian particle in a biharmonic p
tential i.e., the system studied by us recently@8#. We con-
firmed that as for the multivariable case, also in the o
variable system, the energy produced by the SEc algorithm
with different values ofDt is very similar to that produced
by the CBD method~i.e., considerably worse than that ob
tained by the SE, SEK, and GB methods!. Thus, the second
order stochastic term in the SE expansion seems to be
portant irrespective of the complexity of the system studi

It is also apparent, particularly in Figs. 6 and 7, that t
second-order schemes SRK, SRKb, and SE provide usefu
information on the maximum value ofDt at which the algo-
rithm can be properly used, enabling us to choose the o
mum value of the time step. In the case studied here
maximum time step size is about 0.0005, which is almost
order of magnitude greater than what should be used in
CBD calculations, but it is worth noting that it is still a
order of magnitude smaller than can be used in determin
algorithms for the same potential and thermodynamic par
eters.

Finally, we have also performed some calculations w
the so-calledpredictor-corrector algorithm proposed by
Mannella and Palleschi~MP! @11#. The MP algorithm, like
the SRK scheme, needs two evaluations of the force per t
step but involves two stochastic terms and thus can be
pected to produce more accurate results. Our calculations
the 121 Brownian particle fluid have shown, however, th
the data produced by the MP algorithm, withDt.0.0002,
are noticeably less accurate than those obtained by the
approach, similar to the result we obtained for the 1
Brownian particle system. Thus, in the cases studied by
the MP was less accurate and thus less efficient than the
approach.

IV. CONCLUSIONS

In this work we have considered algorithms for solvin
the stochastic differential equation of the position Lange
equations. In particular, properties of the Yukawa fluid we
analyzed from the point of view of algorithmic efficiency
different time steps.

As expected, the original 1975 first-order Brownian d
namics~CBD! algorithm due to Ermak yields the worst e
timate of the calculated quantities for anyDt. It generates
with increasingDt a significant overestimation or underes
mation of both static and dynamic quantities. It is, howev
the simplest scheme to implement and is fairly stable. T
van Gunsteren and Berendesen~GB! algorithm gives the
largest deviation for the mean-square displacement in a t
step ~MSD1! and, as for the CBD method, is not able
reproduce correctly the short-time region of the mean-squ
displacements. It also produces noticeable deviations in
intermediate-time region of the shear autocorrelation fu
tion. Thus, both of these algorithms should be used w
caution when accurate results for dynamical quantities
short and intermediate times are required. The GB algorit
however, yields a much better estimation of static quanti
than the CBD algorithm. Such behavior probably follow
from the fact that, although the GB algorithm is higher ord
than the CBD, it is not atrue second-order algorithm as th
-
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deterministic part is of orderDt2 and the stochastic part in
volves only a term at theDt1/2 level.

Terms of different levels are involved also in the SEb
algorithm ~the deterministic part here is of orderDt but the
stochastic one is of orderDt3/2) and in the SEc algorithm
~here the deterministic part is of orderDt2 and the stochastic
one is of orderDt3/2). In contrast to the GB scheme, the
give rather unsatisfactory static quantity estimation but go
short-time MSD data. Additionally, the noticeable deviatio
of the MSD and the SACF at intermediate times make
SEb and SEc approaches rather uncompetitive compared
the second order schemes. The results produced by theb,
SEc, and GB as well as by MP schemes indicate that al
rithms based on different level terms in the deterministic a
stochastic parts can produce less accurate and/or less
cient results than the consistently lower-order algorithm
They seem to be also less stable with increasingDt. Further-
more, the SEc results clearly show a great importance of t
non-Gaussian second-order stochastic term in the stoch
expansion of Eq.~8!. Any schemes, e.g., higher-orde
schemes@16#, even if used only for a few variable system
should be applied with caution if this term is neglected.

The second-order position-update schemes conside
the stochastic Runge-Kutta algorithm~SRK!, SRKb, and the
SE based on Eq.~8! in the text, give the correct form for th
MSD1 and the best estimation for the mean-square displ
ments and SACF. The SE approach gives also the best
mation for the energy. The SRKb scheme offers a more ac
curate estimation of calculated quantities than the S
approach, although the improvement is marginal and in p
tice it does not compensate for the additional programm
effort required to include the extra force terms in the SRb
update scheme.

The differences between the SE and SRK algorith
come from the fact that the SRK algorithm is an approxim
tion of Eq. ~8! in which all of the random terms are repr
sented by a single random number term. Our results sug
that a rigorous implementation of this expansion gives
provements in the accuracy of the calculated quantities
disadvantage of the SE method is that higher-order der
tives of the interaction potential are involved in the calcu
C
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tion, and evaluation of correlated random numbers is nec
sary. Also, an extension of the SE approach to deal w
position-dependent diffusion coefficients seems to be ra
difficult, as the stochastic part of the expansion becomes
hibitively more complicated. Our calculations indicate th
the large number of rather complicated force-related term
the SE scheme increases considerably the computationa
quirements per step. We estimate its computational e
ciency to be between the CBD and SRK methods. The
approach should have advantages over other approach
the case of few variable problems and/or a very simple fo
of the interparticle interactions~e.g., the harmonic interac
tions!.

The form of the error of the MSD1 and its systema
influence on the calculated quantities implies that the e
ciency of all the studied algorithms decreases as the inte
tion potential become harder.

For multivariable or larger systems, among the conside
approaches, the SRK algorithm seems to be the one w
can be recommended. Its main drawback is the double ev
ation of the force loop per time step. This roughly doub
the CPU time but, as has been shown above, the S
scheme produces the data which are several times more
curate than those produced by the CBD scheme and in s
mary it is at least four times more efficient than the CB
approach.

In conclusion, we have to say that none of the abo
algorithms can be considered as entirely satisfactory in be
accurate, fast, stable, and easy to implement for the
simulations of multivariable systems. This work clearly ind
cates that the task of developing an efficient algorithm
the multivariable stochastic differential equations is far fro
being solved.
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