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Algorithms for Brownian dynamics computer simulations: Multivariable case
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Several Brownian numerical schemes for treating stochastic differential equations at the position Langevin
level are analyzed from the point of view of their algorithmic efficiency for laxggystems. The algorithms
are tested using model colloidal fluids of particles interacting via the Yukawa potential. Limitations in the
conventional Brownian dynamics algorithm are shown and it is demonstrated that much better accuracy for
dynamical and static quantities can be achieved with an algorithm based on the stochastic expansion and
second-order stochastic Runge-Kutta algorithms. The importance of the various terms in the stochastic expan-
sion is analyzed, and the relative merits of second-order algorithms are disdi&ke6i3-651X99)03108-4

PACS numbegps): 02.70—c

[. INTRODUCTION An algorithm that needs only one evaluation of the force
per time step was proposed by van Gunsteren and Berendsen
Dispersed systems such as polymer solutions and collo6]. In the limit of the large friction(i.e., the limit for BD
dal liquids can be represented by a set of stochastic equatioggplications, the algorithm has a particularly simple form,
in which the effects of the large number of solvent moleculegvhich has been used to model, for example, polymer dynam-
on polymer or colloidal particles are represented by randoni€s in solution[7]. . _
forces and frictional terms. The complexity of such systems N the present work we shall consider, from the point of
prohibits exact analytic treatments in all but the most idealView of the BD algorithms, a basic finite step-size expansion
ized of casege.g., infinitely dilute systemsAs a result, for the stochastic dlf_fe_rentlal equations, and make a compari-
various problems in dispersed phase systems require corion between.thelefﬁmency of the dlfferen.t BD algqnthms for
puter simulations to solve them. Compared to the We”_largg or muIUvanqu.e systems. In a previous p.ubllcatlon we
established techniques for solving deterministic equations dfatied out a preliminary study for one-dimensional systems
motion, the methods for solving stochastic equations, whicth8l- ) ) _ _ )
are often called stochastic dynami@&D), are considerably The basic BD algorlth_ms_are considered m_Sec. I, z_ind in
less well developed. Sec. lll a numerical test is discussed. Conclusions are in Sec.
The most simple form of SD called the Brownian dynam- V.

ics (BD), which has been the mainstay of colloid modeling
over the past two to three decades, is the low-order algorithm Il. THE ALGORITHMS
invented by Ermak and McCamm@h,2]. This technique is
at the level of the first-order Euler method for ordinary dif-
ferential equations and requires a very small time step t
produce sufficiently accurate results. The method benefit

The dynamics ofN interacting colloidal particles for
any purposes is adequately described by the position
(Eangevin equation,

from its simplicity and is straightforward to use but, because dr. D
of the small time step required, is quite inefficient. BD simu- e _ —F;,+DY?%,,, (1)
lations that are up to two orders of magnitude longer than dt keT

those for the equivalent MD systems are required. The BD

method can be made more efficient by adopting an approprlWherei =1,... Nlabels the particles and, 8, y refer to the

ate second- or higher-order algorithm. Unfortunately, only aCartes!an co_ordlnates. Th_e quanii) rep_resents a.Gal.JSS'
n white noise proces§) is the free-particle self-diffusion

few proposals have been made, with little concern abou? . , .

their ability to handle efficiently large physically relevant constant_,kB is Boltzmann S_COUSta_”L a_nﬂ is the temp_era-

many-body systems, and as shown below none of them C&_er-[:ia is the net f(_)rce actmg in d|rec.t|o¢m Sn the particle,

be considered as completely satisfactory. I, derived from the |nterpar_t|cl_e potent_|t_?ll(r )_ usuglly rep-
Many of the improved BD schemes are Runge-Kutta-IikeresentEd as a sum of pairwise additive direct interactions

algorithms with some stochastic terms. Several algorithm& (r) between the particles,

along these lines have been proposed, e.g., by Helfahd N

Iniesta and Torrg4], and recently one for the one-variable vl _ W .

case by Honeycuft5]. All these methods, as for the deter- F=-Viu= V'Jz#i Vri=riD- @

ministic Runge-Kutta methods, require more than one evalu-

ation of the particle force per time step, which clearly re-The set of equationél) constitutes a stochastic description

duces their efficiency. of the N-particle evolution through time and space, which is
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equivalent to the Smoluchowski equation without hydrody- d IF
namic interactions. The stationary solution of the Smolu- ry (At)=r,+W,,+ TFkaAt+ Z 2 T ‘K Kig
chowski equation is the canonical ensemble distribution, =16=1 g
2 N d
IFa
1 b AEY 3 T,
P(rM o) = 5 eVl ® 2T P
N d 2
D J°F
_ y . . tor 2 G, ®
whereZ is the partition function and thus the time averages 2T =1 py=1 9 pydN g

produced by Eq(1) are the canonical ensemble averages. _ .
From the Smoluchowski or the Langevin equations, thewvhereK andG are random numbers involvingy,
short-time behavior of time correlation functions can be es-

timated [9]. Explicit results for the form of the Cartesian N ap_ [
components of the mean square displacement are available to Kio= 0 Wiq(s)ds, Gij"= 0 Wia(S)W4(s)ds.
fourth order in time, 9)
D2 | g2 The expansion of Eq8), which we call the SE expansion,
(Ar2)=2Dt— —( — |12 results from the integration of E@1), the Taylor expansion
e T \or? for F, and its repeated insertion into its¢¥f0]. It is impor-
N tant to recognize that the random numligr, is also, like
. D® S PU N\ B+ O() W,,, a Gaussian random number with the following proper-
3T? =1 =1 \\9riadrjp ties:
(4) 2
<K|a> O <KIaKJﬁ> 3DAt 5 5&,81
where d denotes the dimensionality of the systemhere (10)
(and subsequentlydenoteskgT, and B contains higher de- (Wi Kg) =DA?8;8,4.
rivatives of the total potential energyhe explicit form of
this term is irrelevant heje Thus, the term in Eq(8) involving K is of orderAt32 The

The conventional Brownian dynami¢€BD) algorithm  |ast term is of orderA\t? but its nonlinearity does not allow
solves Eq.(1) for the many-body system according to the ys to obtain a more explicit representation and the exact for-
following particle update scheme: mula is replaced by simplefiocal) expressions with the

same first momenG{’~ 3 AtW, W,
D In the following, the algorithm based on the expansion of
Fa(AD)=Tig T TFiAt+ Wi, (®  Eq. (8) will be called the stochastic expansi¢8E) algo-
rithm. In order to see the significance of the various terms in
the SE expansion, we shall also consider another algorithm,
whereAt is the time stepr;,=r,(0), andW; is anormally  gg, with the orderAt®2 in which the two terms of the
distributed random force with zero mean af#,Wjz)  second-order have been neglected, and theaggorithm, in
=2DAt6;6,5. van Gunsteren and Berends€@B) pro-  \yhich only one term, the stochastic second-order term, was
posed the following algorithm: omitted (the first three terms are just the CBD update
schemé The SE[8] and S [11] algorithms have already
D _ been considered for one-dimensional systems showing sev-
Fa(AD)=Tigt 5= (2Fio+ At ) At+ Wi, (6)  eral advantages over other schemes and suggesting their po-
tential utility for multivariable systems.
The formal difference between the SRK and SE ap-
where the time derivative of the force is conventionally ap-proaches can be deduced by expandingRhdorce in the

proximated byF=[F(t) — F(t— At)]/At. SRK schemd10]. The resulting formula is very similar to
The second-order stochastic Runge-Kut8RK) algo-  that in Eq.(8) apart from theAt®? terms in whichK;, are
rithm updates particle positions approximated by AtW,,,. It can be shown that, as long as

the expansion parameter is small, the following SRK-like
scheme gives exactly the SE expans(i8)

Ma(AD) =T, (Fa +FP)At+W,,, )
ro.(At)=r;, (Fa +FL)At+W,,
calculating the forces in two stagéd=F;(r"), and then N d a
Fib=Fi(RN), atR;=r;+(D/T)F;At+W,. For a general sto- n B aFin_ (11)
chastic differential equation such as Hd), the following 2T &4 =1 v 77

expansion for the Cartesian components of the particle posi-
tion holds[10]: where
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2 Equation (8) yields the following expression for the
(Sia)=0, <SiaSjB>:§DAt35ij5aB1 <Wiasjﬁ>:0- MSD1:
(12 , D2 | 22U ,

It is to be noted thaB,, like K;,, is a Gaussian random (Ari,)=2DAt— T\ g2 At
number but, unlikeK,,, is not correlated withw;,. The a
algorithm based on Eq11) we shall call the SRK algo- D2l 1// au\? 92U
rithm. + ? T< ( ar. ) > -\ Atz—l— 5SEAt3'

An important quantity enabling us to differentiate be- te MNia
tween the various algorithms is the mean-square displace- (20)

ment in a single time step, MSD1. Its exact form follows

from Eq.(4). The CBD algorithm gives only the trivial linear On the basis of the relation in E¢L5), the second term of
approximation, orderAt? is equal to zerdfor any At) and the expansion of
Eq. (8), like the SRK algorithm, gives the correct MSD1
2 [ 52 with some deviation only in terms of ordet®.
(Arf)=2DAt— ?< —2> At?+ ScgpAt?, (1) It should be noticed that the same is true also for the SE
J and SE algorithms.

ia

IIl. NUMERICAL CALCULATIONS

D2

In order to compare the efficiency of the above algorithms
5CBD:?

and the error in the second-order term is
1/(aU\2 #*U
f< 0ria) >+ ar_iZQ ' with increasingAt and to establish how the MSD1 errors
influence the static and dynamic quantities, we have consid-
For many physical realizations, the following relation holds:ered the dynamics dfl=121 Brownian particles in two di-
mensions(2D) interacting via a Yukawa pairwise-additive

(14

U potential,
<Ffa>—T<—2> =0, (15)
ar?, Vo
V(r)=—exgd —\(r—1)], (22)
which implies 6cgp>0. Thus, the CBD algorithnalways '
overestimates the MSD1 byl At*(F7, )/ T2, whereV, sets the energy scale ands the screening param-
The GB algorithm also yields an error in the second-ordeleter characterizing the steepness and range of the potential.

term, The Yukawa potential, being the electrostatic part of the

Derjaguin-Landau-Verwey-Overbeek(DLVO) potential
[12], is considered to give a reasonable description of the
interaction of a dilute charge-stabilized spherical colloidal
suspensiongl3], and is often used as a model interaction in
where BD investigationd14,15.
The basic simulation cell was a square with afeaand

the usual periodic boundary conditions were applied. In or-
)- (170 der to make the system test the various algorithms under

demanding conditions, the simulations were performed in the
dense fluid region{=1,0=N/A=0.5) and the interaction

2
ari,

2 D2 (92U 2 2
(Arf,)=2DAt- — At2+ SggAt2,  (16)

3D?

Fio(AD)F;,(0)
des= OcapT ﬁ(':iza ( 1- ;

2
<Fia

As the normalized autocorrelation function is less than unity, il h b | Isi ith 8
the second contribution in thégg is always positive. This pot:lrrna was chosen to dehstrong y repu 5|;_/e, (\jm ' di
means, rather surprisingly, that in general the GB algorithm quantities presented here are normalized into dimen-

. . . 2
yields larger errors than the CBD algorithm. The SRK a|go_S|onI¢s§ units, by choosing, o /D, andV,/o as the char-
rithm gives acteristic values for length, time, and force. In the calcula-

tions the averages were calculated from simulations for
D2 | 52U about 18 reduced time period§.e., ~ 10’ time steps with a
(Ar2)=2DAt— ?<—2> At?— SspiAt?,  (18)  time stepAt=0.0001). In the SE algorithm based on E8),
MNig the two correlated random numbeW¥;, and K;, were
sampled from a bivariate Gaussian distribution.
A validation problem with BD is that, unlike MD, there is
no conserved quantity that can be used to check the correct-
(<Fi2 y—(F, Fib ) (19) ness of the time stepping algorithm. Furthermore, in the sto-
“ o tars chastic part of the BD algorithms a random number genera-
tor is used and operations on the random numbers have to be
which is always positive and for smallt can be approxi- performed. In this situation some subtle error connected
mated by the linear term. Thus, the SRK algorithm is the firswith, for example, spurious random number correlations can
algorithm to give the correct second-order term for MSD1easily be overlooked and any cross check of the code is
and yields an underestimation of MSD1 with a leading termhighly desirable. In fact, Eq15) can serve this purpose. In
of orderAt3. The same is true also for the SBIdlgorithm.  the case of the SRK algorithm, the equality Ebp) is well

with an error contribution,

D3

-
SRK™ 513
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FIG. 1. Test of the cross-check formula Eg5). The data are
obtained from the SRK scheme wittt = 2x 10" 5. The continuous
line represents the data obtained by the correct SRK code and t

dashed line is the data produced by the SRK code in which incor:

rectly the same random number was used in the calculation of the
andy components of the particle displacement. The formula of E
(15) vs the accumulated simulation tinta@ and the corresponding
total energy per particléb).

obeyed with accuracy better than 0.5% for ali<0.0005.
An example of utility of Eq.(15) is shown in Fig. 1. In fact,
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1.05 -

1.00

FIG. 2. The mean square displacement over time of a 2D
Yukawa fluid obtained from the seven BD algorithms discussed in
the text with time step\t=0.0005. The curve labeled “exact” is
the limit obtained from calculations witht=2x10"5. The SE,
SRK, and SRHK algorithm data coincide with the exact curve. The
inset presents an enlargement of the short-time regions.

are qualitatively very similar On the scale of the figure the
MSD curves obtained from the SRK, SBKand SE calcu-
lations coincide with the exact curve, produced by all algo-
rithms in the limit of very small time step. The CBD curve
very slowly approaches from above towards the exact curve.
Also the GB curve deviates considerably from the exact
curve at short times but converges relatively quickly at
longer timeg(in about 10—15\t) to the correct form. Notice
that in accordance with Eq17), it starts above the CBD
curve. The SB produces the correct short time limit in ac-
hcordance with Eq.(20) but fairly quickly starts to bend
Jownward with the maximum deviation somewhere around
t=0.05 and the deviations from the exact curve seem to
persist for a long time. Also the $Echeme gives noticeable
deviations from the exact MSD curve. As one may see in
Fig. 2, apart from the short-time region, it consequently
overestimates the exact results.

The statistical uncertainty of the MSD data, as for any
autocorrelation functiofACF), increases with time from the

using this relation we were able to detect an error in the SRIQrgin. In our case, in the long-time regiot>2) where a

code connected with the use of the same random number f
x andy coordinates, and which is hardly visible in the other
more usually calculated quantities, e.g., energy in Fig).1

flateau is reached, all calculated MSD curves least for
At=<0.0005) lie within the error bars around the “exact”
curve. Only the data produced by the CBD algorithm with

Perhaps the most important yet simplest dynamical quanAt=0.0005 seem to show some systematic departure and

tity is the one we shall consider, and that is the time-

dependent mean-square displaceni®8D), over timet, for
an arbitrary particle,

1
D ()= 7r([r(1)=r(0)]%), (22

which is averaged over all particles.
In the long-time limit it gives the self-diffusion coefficient

deviations at long times. In this situation it is difficult to
make definitive statements about the influence of the particu-
lar algorithm on the long-time behavior of the MSD.
Therefore, within statistical uncertainty, all algorithms re-
produce the long-time behavior of the MSD, but differ con-
siderably in their ability to reproduce its intermediate and
particularly short-time characteristics. This is clearly seen in
the enlargement in Fig. 2, which illustrates a significant in-
fluence of the MSD1 on the short-time behavior of the MSD.

of the particle. The general behavior of the MSD calculatedn the enlargement, slight differences between the SRK,
with the various algorithms is shown in Fig. 2 for a fairly SRKb, and SE algorithms are still hard to notice. The SE
large time stepAt=0.0005(for other time steps the results results practically coincide and those from the SRK method
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FIG. 3. The short-time region of thesd from the SRK and time t
CBD algorithm and four different sizes of the time step in increas- £ 4. The SACF from different algorithms ant=0.0005.

ing magnitude of deviation: 0.0001, 0.0005, 0.0008, and 0.001. The SE, SRK, and SRiKdata coincide with the “exact” curve and

) ) the inset shows an enlargement of the intermediate-time regions.
only very slightly underestimate the exact curve. The 8RK

method produces data which lie between the SE and SRK
curves.

The significant influence of the size of the time step on
the MSD1 and the short-time behavior of the MSD is illus-

trated for the SRK and CBD algorithms in Fig. 3. The figure : L . o
also demonstrates that on increasing the magnitudatof the data practically coincide with the exact curiamilar

deviations of the SRK data from the exact curve emergebehavIor Is observed for the SE and heme In con-

although the SRK deviations are always more than ten timetsraSt’ the influence of the magnitude aft on the CBD

smaller than those from the CBD algorithm at the same siz<]3::'cheme IS quite S'gn'f'caf‘t ar;d, as may be seen from the
of the time step. igure, only calculations witlAt=<0.0001 lead to the correct

The second important dynamical quantity of primary in- form of the SACF(and consequently the viscosity of the

. : ; X systen.
terest often calculated in BD simulations is the shear-stressy . . . . .
time autocorrelation functiofSACB), defined as The behavior of the static quantities obtained by different

algorithms at various time steps is illustrated in Figs. 6 and 7.
v In Fig. 6 the total energy per particle is shown. It appears

C(t)=—=(0,5(0)04p5(1)), (23)  from the figure that the best approximation, at a given size of
et the time step, is achieved by the SE method and the wasst

The influence of different sizes of the time step on the
SACF is illustrated in Fig. 5 for the case of the CBD and

SRK algorithms. In the case of the SRK scheme, apart from
results obtained with the largest time stefps>0.0005, all

whereo .z is an off-diagonal component of the stress tensor

(a+# B). The C(t) determines, through the Green-Kubo re- 1.0 7
lation, the shear viscosity and its initial value gives the ]
infinite-frequency shear modulu§&.,.=C(0). The shear 1
stress correlation function is a collective quantity, which de- o8 4N 0 .. CBD
cays relatively quickly towards zero. The normalized SACFs ]
calculated with the various algorithms are compared in Fig.
4. At short times theC(t) produced by the different algo-
rithms converge to the exact curve, which is quite different
behavior to what was observed for the MSD. With increasing ]
time the curves become more different<(0.03) and at even 3 AN
longer times {>0.1) they converge slowly again towards 0.4 7 BN
the exact curve where they are mutually consistent within ]
error bars. The most significant deviations are therefore at ]
intermediate times, which may be seen more clearly in the 0.2 ]
inset in Fig. 4. Similarly, as in the case of the MSD, the 0.00 0.01 0.02
largest deviations are produced by the CBDpbSand SE
algorithms, although now the CBD algorithm underestimates
and Sb overestimates the exact curve. Also the GB scheme F|G. 5. The SACF from the SRK and CBD algorithm. The
produces noticeable deviations from the exact curve. AgaiResults are for different sizes of the time step in increasing magni-
the best estimate is given by the SRK, SE, and BRIgo- tude of deviation: 0.0001, 0.0005, 0.0008, 0.001. Eb#=0.0005
rithms. the SRK data coincide with the “exact” curve.

0.6 ]

C(t)/c(0)

time t
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0.444 CED term in the SE expansion, we have also performed BD cal-
josese SRK culations with a 1D Brownian particle in a biharmonic po-
jaaasa ggKb tential i.e., the system studied by us receri8y. We con-
0.440 Jx*x SEb firmed that as for the multivariable case, also in the one-
1+ SEc variable system, the energy produced by the Sgorithm
J+++++ GB . . N .
1 ---- ‘exact’ with different values ofAt is very similar to that produced
] by the CBD methodi.e., considerably worse than that ob-
tained by the SE, SEK, and GB methadEhus, the second-
order stochastic term in the SE expansion seems to be im-
portant irrespective of the complexity of the system studied.
It is also apparent, particularly in Figs. 6 and 7, that the
second-order schemes SRK, SRkand SE provide useful
] information on the maximum value dft at which the algo-
] rithm can be properly used, enabling us to choose the opti-
0.428 . : .
0.0000 0.0005 0.0010 mum value of the time step. In the case studied here this
maximum time step size is about 0.0005, which is almost an
TIME STEP order of magnitude greater than what should be used in the
CBD calculations, but it is worth noting that it is still an
order of magnitude smaller than can be used in deterministic
algorithms for the same potential and thermodynamic param-
eters.
expectedlis by the CBD route. FoAt<0.0005, the results Finally, we have also performed some calculations with

produced by the SRK and SR¥@lgorithms are practically as  the so-called predictor-corrector algorithm proposed by
good as the SEwithin the error bars they all coincide with \jannella and PalleschiMP) [11]. The MP algorithm, like

the exact values For the larger time steps the deviations the SRK scheme, needs two evaluations of the force per time
from the exact value become more significant. The resultgtep but involves two stochastic terms and thus can be ex-
produced by the Stemethod are only slightly better and by pected to produce more accurate results. Our calculations for
the SEE even slightly worse than that obtained by the CBDhe 121 Brownian particle fluid have shown, however, that
route. The SE method becomes unstablestt>0.0008. All  {he data produced by the MP algorithm, wift>0.0002,

this clearly_ demonstrates the_great importance of the p_articu&-lre noticeably less accurate than those obtained by the SRK
lar terms in the SE expansion. The GB approach gives @nnroach, similar to the result we obtained for the 1D
fairly good estimation of the energy, although the methodgqwnian particle system. Thus, in the cases studied by us,

becomes unstable fakt>0.0008. The results for the pres- {he MP was less accurate and thus less efficient than the SRK
sure are qualitatively very similar to that for the energy. Asapproach.

one can see in Fig. 7, the results for the shear modulus are

quite similar to those of the energy. Again, the worst esti-

mates come from the CBD, $Eand S, and the best from IV. CONCLUSIONS

SE, SRK, and SRK schemes. . . . .
The clear disability of the SEc approach to estimate prop- In this wqu we havg cons@ered aIgonthm; for solvmg

erly the static quantities is rather unexpected. To confirm théhe stochastic differential equation of the position Langevin

important role of the second-order non-Gaussian stochastigduations. In part|cuI§1r, properties of thg Yui<awa_ ﬂ.u'd were
analyzed from the point of view of algorithmic efficiency at

different time steps.
As expected, the original 1975 first-order Brownian dy-
namics(CBD) algorithm due to Ermak yields the worst es-

ENERGY
o
»
&

0.432

FIG. 6. Energy of the Yukawa fluid vs time step from the dif-
ferent algorithms. The exact value is estimated to be 0.4345.

1.90

jeeoco CBD
joesan SRK
1.85 Jssasa SRKD

3 Jeeces SE timate of the calculated quantities for atyt. It generates
© 3xxxxx SEb with increasingAt a significant overestimation or underesti-
wn Ehnn SEc . . . . .
L 1.80 J+++++ GB matio_n of both static and. dynamic quanti_ties._lt is, however,
— j -~~~ 'exac the simplest scheme to implement and is fairly stable. The
2 1.75 van Gunsteren and Berendes@BB) algorithm gives the
o 3 largest deviation for the mean-square displacement in a time
= E step (MSD1) and, as for the CBD method, is not able to
e 170 3 reproduce correctly the short-time region of the mean-square
§ E displacements. It also produces noticeable deviations in the
% 1.65 3 intermediate-time region of the shear autocorrelation func-
E tion. Thus, both of these algorithms should be used with
1.60 3 caution when accurate results for dynamical quantities at
0.0000 . . short and intermediate times are required. The GB algorithm,

TIME STEP however, yields a mych better estimatipn of static quantities

than the CBD algorithm. Such behavior probably follows

FIG. 7. The shear modulus vs time step from the different algofrom the fact that, although the GB algorithm is higher order
rithms. The exact value is estimated to be 1.70. than the CBD, it is not @rue second-order algorithm as the



PRE 60 ALGORITHMS FOR BROWNIAN DYNAMICS COMPUTER ... 2387

deterministic part is of ordeAt? and the stochastic part in- tion, and evaluation of correlated random numbers is neces-
volves only a term at that'? level. sary. Also, an extension of the SE approach to deal with
Terms of different levels are involved also in the IBE position-dependent diffusion coefficients seems to be rather
algorithm (the deterministic part here is of ordat but the  difficult, as the stochastic part of the expansion becomes pro-
stochastic one is of ordekt¥?) and in the SE algorithm hibitively more complicated. Our calculations indicate that

(here the deterministic part is of ordat? and the stochastic the large number of rather complicated force-related terms in
one is of orderAt®?). In contrast to the GB scheme, they the SE scheme increases considerably the computational re-

give rather unsatisfactory static quantity estimation but goodlUféments per step. We estimate its computational effi-

short-time MSD data. Additionally, the noticeable deviationsC/€CY 10 be between the CBD and SRK methods. The SE
of the MSD and the SACF at intermediate times make the2PProach should have advantages over other approaches in

SEb and SE approaches rather uncompetitive compared tc}he case of few. vari_able prqblems and/or a very.simple form
the second order schemes. The results produced by the SEO_f the interparticle interactiong.g., the harmonic interac-
SEc, and GB as well as by MP schemes indicate that algoti®nS- . .
rithms based on different level terms in the deterministic and The form of the error of the MSDI and its systematic

stochastic parts can produce less accurate and/or less eﬁiw__fluence on the calculated quantities implies that the effi-

cient results than the consistently lower-order algorithmsf:.Iency of ajl the studied algorithms decreases as the interac-
They seem to be also less stable with increadgihgFurther- tion potenn'al bgcome harder. :

more, the SE results clearly show a great importance of the For multivariable or Iarger_ systems, among the con3|der_ed
non-Gaussian second-order stochastic term in the stochasﬁ@proa(:hes’ the SRK algonthm seems o be the ane which
expansion of Eq.(8). Any schemes, e.g., higher-order can be recommended. Its main drawback is the double evalu-

: : tion of the force loop per time step. This roughly doubles
schemeg16], even if used only for a few variable systems, & i
should be applied with caution if this term is neglected. the CPU time but, as has been shown above, the SRK

The second-order position-update schemes considereﬁ?heme produces the data which are several times more ac-

the stochastic Runge-Kutta algorithi®8RK), SRKb, and the curate than those produqed by the CBD _scheme and in sum-
SE based on Eq8) in the text, give the correct form for the mary it is at least four times more efficient than the CBD
MSD1 and the best estimation for the mean-square displac@-pproaCh' .

In conclusion, we have to say that none of the above

ments and SACF. The SE approach gives also the best esti- " ) . . . .
mation for the energy. The SRKscheme offers a more ac- algorithms can be considered as entirely satisfactory in being

curate estimation of calculated quantities than the sruéccurate, fast, stable, and easy to implement for the BD

approach, although the improvement is marginal and in pracgimulations of multivariable systems. Thi$ yvork clearly indi-
X ates that the task of developing an efficient algorithm for

tice it does not compensate for the additional programmin h ltivariabl hastic diff ial : is far f
effort required to include the extra force terms in the $RK be?nrgigx/ag:ja e stochastic differential equations Is far from

update scheme.

The differences between the SE and SRK algorithms
come from the fact that the SRK algorithm is an approxima-
tion of Eq. (8) in which all of the random terms are repre-  The work has been supported by Polish Committee for
sented by a single random number term. Our results suggeStientific ResearckKBN) Grant No. 8T11F01214. We are
that a rigorous implementation of this expansion gives im-grateful to Professor Tony Ladd, University of Florida at
provements in the accuracy of the calculated quantities. AGainesville, for helpful discussions. Parts of the calculations
disadvantage of the SE method is that higher-order derivawnere performed at the PoznaPomputer and Networking
tives of the interaction potential are involved in the calcula-Center.
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